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Abstract

The main contribution of this paper is to put stability requirements for convergence of direct adaptive
periodic controllers on equal footing with requirements for indirect adaptive periodic control, as set
forth by Lozano [20]. The resulting stability condition is simply that the plant order is known a-
priori. No other prior plant knowledge is used (e.g., relative degree, high-frequency gain, etc.), and
persistent excitation is not required. More importantly, no assumption or knowledge is required as to
whether the plant is minimum or nonminimum phase. A numerical example is given to demonstrate
the method, and some guidelines are given for improving the adaptive transient response.

1 INTRODUCTION

An intriguing property associated with generalized sampling mechanisms is their ability to relocate
transmission zeros of the plant. The potential benefit of sampling for zero relocation was noted
in the paper by Astrom, Hagander and Sternby [3]. Subsequent research investigated applications
of generalized sampling mechanisms to such problems as robust control, simultaneous stabilization,
sensitivity minimization, and zero placement, cf., [11][12][18][19].

Generalized sampling can take many different forms, e.g., multirate sampling, periodic control,
generdlized sample-and-hold, etc. Most approaches have an interpretation as a mathematical “lift-
ing” where a serial to paralel conversion is performed on the plant input and output signals, and
mappings are considered between the vectorized quantities.

In Lozano [20] an important lifting was introduced for which the transmission zeros are located
at the origin, Such liftings are denoted here as zero annihilation (ZA) liftings. General conditions
characterizing the ZA property can be found in Bayard [6], dong with several eztended horizon
lifting versions which satisfy the ZA conditions. Extended horizon liftings have the advantage of
reducing required control torque and the size of the transient response, and have been applied to
problems in optical instrument pointing [9], and structural vibration damping [8].

The transmission zeros of the ZA lifted plant are at the origin regardiess of whether the original
plant is minimum or nonminimum phase. This is important since it provides a means by which a
nonminimum phase plant can be “transformed” into a minimum phase lifted plant. In light of this
property, it is not surprising that several stable adaptive control approaches for nonminimum phase
systems have been developed based on such liftings [5] [20] [22] [25].

Of particular interest are the adaptive controllers of Lozano [20] [21] [22]. These adaptive con-
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trollers are of the indirect type, i.e, the plant parameters are estimated first, and are then used to
compute the control gains. A main result of Lozano is that only the plant order is required to be
known to establish stability.

‘The present paper will consider direct adaptive control for the same class of liftings. The main
contribution of this paper is to put stability requirements for convergence of direct adaptive periodic
controllers on equal footing with requirements for indirect adaptive periodic control, i.e., that the
plant order is known a-priori. No prior knowledge of the plant relative degree or high-frequency gain
is used, and persistent excitation is not required. More importantly, no assumption or knowledge is
required as to whether the plant is minimum or nonminimum phase.

2 BACKGROUND

The lifting of Lozano is briefly reviewed [20]. Consider the single-input single-output state-space
realization, _ _
z(t -t 1) = Az(t) 4 bu(t) (€))
y(t) = e 2(t) @
where z € R" is the state vector, u and y are the scalar plant input and output, respectively, and
A b, ¢ are system matrices of appropriate dimensions.

Then it is shown in Lozano [20], that the plant input and output in (1)(2) satisfy,

Y(t+2n) = AY @)+ H'U({+ n) t HU(t) + H'U@ —n) 3)
where,
UT(t)=[u(t),...,u(t+ n- 1)] (4)
YT+ n) =[y@t),...,y(t+ n - 1) ©)
H=0C (6)
A= 0A"0"! )
H' = 0A"C- 040G )
0
cth

HII — “I (9)

cTAP-2b ¢’y O

and O is the system observability matrix and C is the system reachability matrix. Let Uk denote U
at timet = 2kn, k =0, 1,..., and enforce (by design) the constraint,

Ult—n)=0 for t=2kn (lo)

Furthermore, let Yx denote Y (¢ -t- 2n) at time ¢ = 2kn, k= 0,1,... . This notation definea a lifting
whose sampling structure is shown in Fig. 1. As seen in the figure, (10) forces the input to be zero
every aternate window of length n. It is shown by Lozano that using (10), model (3) can be written
as,

Y = AYa_ 14 HU; (11)

As shown in Fig. 1, the output is controlled in alternate windows, which are staggered in time with
respect to the nonzero input windows.
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Figure 1: Mechanization of lifting.

It is emphasized that any controllable and observable linear tirne-invarian tplant (1)(2) can be
lifted into the form (11) using only knowledge of its plant order [20]. Furthermore, the nonsin-
gularity of the leading coefficient H is ensured simply by the reachability and observability of the
original (unlifted) plant and does not depend on whether the true (unlifted) plant is minimum or
nonminimum-phase.

The discussion will focus on developing a stable adaptive law for (1 1).

A rearrangement of (11) gives the equivalent plant representation,

Linear Control Form

Ut = KYio14 LY) = Ory (12)

where,
K=- HA;, L=H"} (13)
O=[K|L]; = WM,V (14)

Representation (12) is said to be in Linear Control Form (cf., Goodwin and Sin [15]) since the
input control is written as a linear function of observed signals, One important advantage of this
parametrization is that a deadbeat controller can be written directly in terms of the gains K and L
as follows,

Deadbeat Control
Ul =KYio1 + LYS = Or (15)

v = [T 1T (16)

where Ykd is a specified trajectory to be tracked by Yi- Hence, it is only necessary to estimate K
and L in (12) and then “copy” the estimates for implementing the deadbeat control (15).

lLozano has developed several adaptive control approaches [20] [22] [21], based on the representa-
tion (11). Lozano’s approaches are ‘(indirect” in the sense that the plant parameters A and H are
first estimated from (11) and then used to compute the control gains K and L in (15) using the
formulas in (13) (note that only K is required for adaptive regulation). From (13) it is seen that this
requires a numerical inversion of the estimate of H each iteration. In order to ensure invertibility of
this estimate, L.ozano introduces a modification in [20] based on a polar decomposition.

In contrast to Lozano's approach, the present paper will focus on a “direct” adaptive scheme.
In a direct scheme, the gains K and L in control law (15) are estimated directly from the plant
representation (12). Earlier stable direct adaptation schemes have been developed for periodic
control in Ortega [25] and Bayard [5]. The present direct adaptive approach is similar to those in
[25][5], except that the Recursive Least Squares (RLS) algorithm will be used rather than simple
normalized projection, and tuning will be breed on minimization of the input error rather than the
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output error. The advantage of this approach is that only knowledge of the plant order is required
for stability, i.e., the requirements for prior partial Markov parameter information in Bayard [5] and
Cauchy Index constraints in Ortega [25] have been relaxed.

An added benefit of direct adaptive control is that numerical inversion of the estimate H of H
is avoided. However, even though H is not inverted, its nonsingularityis still required to ensure
adaptive stability. Hence, the polar decomposition introduced by Lozano will be needed to complete
the. stability proof.

Several simulation studies indicating the performance advantagea (i.e.,, bounds on transient re-
sponse, convergence time, etc.), of using a direct adaptive approach with RLS adaptation can be
found in Jakubowski et. al., [16][17]. However, these earlier studies were conducted without any
mechanism to ensure stability, and several counterexamples to convergence presently exist. Com-
pared to [16][17], the present paper introduces several modifications to ensure stability, and to
provide a theoretical framework for using this clam of algorithms.

3 STABLE ADAPTIVE CONTROL

In this section, a stable direct adaptive controller is defined for the plant lifting (1 1).

3.1 Input Prediction Error

Given an estimate ék—l of @ available at time k, one can construct the input prediction,

UP = Bp1mi (17)
and the associated input prediction error,
E AU —Up =i ymi (18)
where,
1 26i,-0 (19)

3,2 Normalized Signals

For adaptation purposes, it is useful to define the following normalized quantities,

d
), = Tk Fd — Tk__. E = ——Ek—— 20
Tame 7 Tam’ T Tam (20)

where the normalization factor is defined by,
e V(Y]] + {[Ye-al]) (21)

and upper and lower bounds are specified on v,
F2m2y>0 (22)
Dividing through by 1+ %k in (18) defines the normalized prediction error equation,

B & &1 (23)



3.3 Adaptation Algorithm

Equation (23) is a linear-in-the-parameter error expression for which many adaptation methods
apply. The discussion here will focus on the Matrix Parameter Recursive Least Squares (MP-RLS)

algorithm,
MP-RLS Adaptation Algorithm

A oa EyiT Fy
Op = Bpy — kIRl (24)

(25
It is shown in Appendix B (see also [7]), that the MP-RLS algorithm satisfies the following properties,
UL @ F = O B2 = o= GoFy !

P2: vy vy < ... € vy where v = tr{® Fy el

P3: 3(Fk) < E(Fk-l) <..K E(FO)

P4: limp_eo Ek =0

P5: tr{®: 2]} < vy - 7(Fp)

P6: limgioo ||Gx — Oiy|ly = 0, where || - ||; is the Frobenious norm

P7: limgyeo Fr = Feo

P8: limgoo Fr1fe =0

19 limgoeo Bk = O = B + GoFy * Foo

34 Adaptive Control Law - Discussion

An adaptive control lawis defined by replacing ©in (15) by its estimate, i.e,
Ur = ék-lrf (26)
This control law is for discussion purposes only and will be modified subsequently.
Let the output tracking error be defined as,
&G=Ye-Y¢ (27)

Using adaptive control law (26) and the MP-RLS estimator, the output tracking error is related to
the input prediction error as follows,

. UP-Ue  » . A ~d
= —F " = Gp_yfi — Op- 28
E; It o Ok fs 1T} (28)
Lo (Y~ ka) - ~
= Li_1& 29
T4 m ko (29)




where the normalized tracking error is defined as

. £
Er = & 30
S P, (30)

Remark 1 For control purposes, it is desired for the output tracking error to converge to zero.
Given that Ek goesto zero by property P4 of the estimator, it is clear from (29) that &k will also

go to zero if @(Lk-1)ie bounded away from zero. Unfortunately, while the true gain L satisfies this
property, the estimate Li produced from the recursive estimation scheme has no such guaranteed

properties. The possible singularity of the estimate L& destroys the above argument for convergence
of the tracking error and is the essence of the difficulty associated with proving stability.

3.5 Adaptive Control Law - Modified

Lozano overcame the singularity problem for indirect adaptive control in [20] by introducing a
modification of the matrix estimate baaed on a polar decomposition. A similar approach will be
used here for direct adaptive control.

Construct the modified estimate,
O = 6, + e Ri Fi (31)
Ri = [0 ]Q4) (32)
where some lower bound is specified on u,
> p>0 (33
Here, matrix Q& in (32) is determined from a polar decomposition,
L = QiSi (34)

where @ is a rea orthogona matrix, and Sk = S¥ > O (cf., Barnett [4]). Conceptually, the polar
decomposition can be written in terms of the singular value decomposition Lx = ULVT QS follows,

Le = v (vev?) (35)

noting that @k = U V'is an orthogonal matrix and Sk = VEVT is symmetric non-negative definite
by construction. The polar decomposition of a matrix gets its name from analogy to the polar
decomposition of a complex number z = % #(*)|z|since Sk > O p{ays the role of the nonnegative

quantity |z| and any unitary matrix Q can be written in the form e'¥ with W Hermitian [4].-

Using the modified estimate (31), a modified adaptive control law can be defined aa,

Modified Adaptive Control .
Ur = ©p_yr8 (36)
Bi-1 = [Ki-1| Li-1) (37)
where, _ .
Kio1 = Kicy+ prcaQu- 1 ST ymucy (38)
Dicr = Doy prc1Qu-r fiy ey (39)




and mg—yand fe-1 form the partitioned Cholesky factors of Fk_], ie.,
Fooy= FxoiFiy2 0 (40)

[ ml"_
s tH- ﬂ_ (41)

This direct adaptive control law is depicted in Fig. 2.

Lifted __P!ant Y.k

Uk

O]

[ Adaptive Law

Figure 2: Stable direct adaptive periodic control law.

3.6 Stability Results

The main result is given next.

Theorem 1

Let the lifted plant (11 ) be controlled by the modified adaptive control (36) and MP-RLS estimation
algorithm (24)(25), to follow a bounded trajectory ||Y{¢||<«. Then the signals Ux and Yk remain
bounded, and the tracking error goes to zero asymptoticaly, i.e.,

Jim Yi ¥4 =0 (42)

Proof: If the modified adaptive control (36) is applied to the plant (11) at each time k, the nor-
malized input prediction error (20) becomes,

- p- . —
Er = Ur U _ Bio1fr— Bp17f (43)
14
= Buoafr— Bpoiff 4 proy Rec1 Fio i (44)
= Br-1(fr 7)) — pr-1Re1Frafi (45)

Lioa(Y: - Y8 .
= M pr—1Re-1Fe 1T (46)
14 n




Taking the limit of both sides of (46) and applying (P4) and (P8) yields,

T _vyd
koo 14 m

Since by Lemma A2 of Appendix A, #(L-1) >0 is bounded away from zero, it follows from (47)
that ,

. &
kl-“énm 1+ o “8)
Note aso that, )
€ell® > 1 I&]l
e L L 49
(T+m)? -2 1409 “9)
where we have used the fact that 2nk < 1+ nZ. Combining results (48) and (49) it follows that,
el
g O (=0

Now consider convergence. of the unnormalized tracking error €. Using the triangle inequality, one
can verify the following linear bound edness condition,

me = e1Ye-all+ 1Yell) € 7I¥eos = Y1+ 7Y% = Y+ VAV I+ IVED (61)
Al + TNEN + 1 S 014 €2 max 118 ] (52

where ¢, = 2x7 2> F(IYE  H+11Y]]) and e2 = 2¥. Given convergence of (50) and linear boundedness
rendition (52), the Key Technical Lemma (Goodwin and Sin [15]) ensures that,

Jim £ =0 (563)

and that Nk remains bounded. Boundedness of Nk implies the boundedness of Yr which together
with P3, P5, and (36) imply the boundedness of Us. .

Remark 2 In light of the discussion in Remark 1, the main idea behind the stability proof can be
understood completely from (46), This relation uses the modified gain I and has the extra term
Ri.1Fi_1fr compared with the error (29) which arises from using the unmodified gain L. This
extra term is due to the modification (31) of the parameter estimate. Somewhat remarkably, this
term vanishes by property P8 of the estimator. Since the modified estimate Lk-1is nonsingular by
design (i.e, Lemma A2), the stability proof outlined in Remark 1 is recovered.

It appears that property P8 was first used for proving adaptive stability in the paper by Lozarro
and Goodwin [23], although the idea is implicit in an earlier paper by P. de Larminat [26]. In [23], P8
follows as a property of the normalized RLS algorithm with constant trace. Although the constant
trace is dropped in the present MP-RLS algorithm, it is shown in Appendix B (ace aso [7]), that
property P8 is recovered by using data normdization in combination with convergent covariance
propagation. »




4NUMERICAL EXAMPLE

4.1 Two Cart Model

The direct adaptive control algorithm will be demonstrated on the two cart model shown in Fig. 3.
The two carts have mass ml = m, = 1 and are connected with a spring having constant k = 1. It
is desired to control the position X,of the second cart by applying a force u on the first cart, where
the position #2is the measured variable. The transfer function in the Laplace Transform domain is
given as,

z2(s) K

i g < 54
u(s) - m1522(r\7m2157+(1+2~‘;‘)k) &

A zero-hold discretization of the transfer function (54) with sampling time T = 1 gives the discrete-
time system,
z2(z)  B(2)
u@ -A(z)
where the roots of B(z) are (-8.7103, , -1, -.1148) and the roots of A(2) are (0.1559+ .9878i, 1, 1).
It is seen that the plant haa unstable double integrator dynamics, and has nonminimum-phase zeros
on and outside of the unit circle.

(55)

X, X,

— —

u K [

— M www
O O O_ QO

Figure 3: Two Cart Model

4.2 Example 1: Direct Adaptive Periodic Control

The adaptive estimator is initidized by €0 = O, o = 1 0°.1, with design parameters Y¢= 107,
sy = 1/tr{Fo} = 1.25 % 10". The carts are initialized with positions z;(0) = 2,(0) = O and
velocities #1(0) = .1 x 10° £2(0) = .3 x 10*. The reference trajectory Y is chosen as a unit
sguare wave with an 80 second period.

Simulation results are. shown in Figs. 4, 5, and 6. It is seen from Fig. 4 that the adaptively
controlled system converges during the first 1.5 cycles of the sguare wave reference. Fig. 5 shows
that the adaptive gains and covariance converge within the same period of time,

Even though the design parameter #& = 1.25 x 1012 has been chosen small in this example,
it has a critical effect on the overall stability. In particular, the plot of a(Lx ) in Fig. 6 (bottom)
shows that the matrix gain 1y is initially singular (less that 10" for double precision), and stays
near-singular for at least 40 seconds. In contrast, the modified gain @(Lk) shown in Fig. 6 (top),
remains bounded below for al time, as required for adaptive stability.
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Figure 4: Direct adaptive control for two-cart model. tep: position 2 of second cart (solid), reference
trajectory Y;¢ (dotted); bottom: control input Uk
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Figure 6: Direct adaptive control for two-cart model (cent'd). top: modified adaptive gain o(Ly);
bottom: unmodified adaptive gain e(Lx)

4.3 Example 2: Performance Considerations

Aside from choosing #kand 7e positive for stability reasons, practical choices for these design param-
eters are driven by performance considerations. Typically these parameters should be chosen small
so as to recover (in the limit), the nice transient response properties of the unmodified/unnormalized
adaptive RLS algorithm shown by simulation in Jakubowski et. al. [16][17].

The effect of not choosing #k sufficiently small is shown by simulation and briefly analyzed. The
set-up is identical to Example 1, except #k = 1. The results are shown in Fig. 7 where it is seen
that the transient is on the order of 10%.

The poor transient performance in this case can be traced to short periods of time during which
the adaptive controller is “locally” unstable. Specificaly, the time-varying closed-loop system can
be calculated as,

Yy = Ao + sz_lykd (56)

where, -
Ar=A+ H(Kp_1 + pe-1Qr-1 i miy) (57)

Hence, for “local stability” the eigenvalues of the closed-loop system matrix Axshould be inside the
unit circle. Since mig—1 and fx-1 are factors of the covariance Fr—3 which is chosen large initially,
the local stability condition will be violated unless pk-1in (57) is chosen sufficiently small relative
lo the covariance. Scaling p to the reciprocal covariance trace (eg., in the first simulation we chose
Hi-1=.1/tr{Fo}), is a reasonably good rule of thumb. While such choices are not required for
stability, they are necessary (although not sufficient) conditions for a good transient response.
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Figure 7: Simulation showing large transient due to choosing #k >0 too large. top: position Zz2 of
second cart (solid), reference trajectory Yf (dotted); bottom: control input Uk

5SCONCLUSIONS

It is shown that only knowledge of the plant order is required to achieve stable direct adaptive
control of nonminimum phase systems using periodic controllers. This relaxes requirements for
stability found in earlier direct adaptive periodic control approaches involving plant Cauchy Index
constraints [25], or partial plant Markov parameter knowledge [5].

As a result, stability requirements for convergence of direct adaptive periodic controllers are now
on equal footing with requirements for indirect adaptive periodic control, asestablished in the work

of Lozano [20].
1)espite theoretical stability results, there are several open issues which remain to be resolved

before the present approach can be made to work reliably in practice:
11. Reduction of adaptive transient

12. Modifications to meet actuator saturation constraints

I3. Robustness to bounded process/measurement noise

14. Robustness to model order/delay, unmodelled dynamics

Concerning 11 and 12, large transients are often experienced when simulating systems with adap-
tive periodic controllers. This is partly due to the certainty equivalence property of the adaptive
control which is controlling the wrong plant with conviction most of the time, In addition even
the transient response in the nonadaptive case can be large due to the fast “inverse plant” nature
of the control. Unfortunately, pole-placement strategies offer little relief since poles of the lifted
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system are associated with the slow time scale and hence must be kept near the origin to maintain
reasonable performance, For the nonadaptive case, it has been shown in [6] [8] that transients and
control signals can be significantly reduced using extended horizon liftings. It is hoped that this
sae approach can lead to reduced transients in the adaptive case.

The algorithm in the present paper is not robust to bounded noise, and serves primarily to show
equivalence of stability conditions between direct and indirect approaches under ideal conditions.
Modifications similar to the deadzone in [20] are presently under consideration to address issue 13
in the direct adaptive case.

Issue 14 is perhaps the most difficult to address. The warnings contained in Goodwin and Feuer
[14] regarding generalized sampling methods are most relevant for issue 14, since one must rely
on high frequency plant dynamics for reliable control over low frequencies. A method proposed
in Lozano [21] is applicable to overparametrization in the regulation problem, but presently has
no extension to the tracking problem. Alternative approached based on multiple model banks are
emerging, and may play an important role in the future (cf., Morse [24]).
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A APPENDIX A: Supporting Results

The whole point of Appendix A is show that the modified gain o(Li)is bounded away from zero.
Lemma Al is used to prove Lemma A2 which contains the desired result.

Lemma Al: Let the MP-RLS algorithm (24)(25) be applied to the normaized error equation (23).
Then the estimate L and its polar factor Sk in (34) are explicitly bounded from above as follows,

il <21 (A1)
S < Va1 (A.2)
where,
o 21r{667} + v, . 7(Fo) (A.3)
Proof: Consider the matrix inequality,
X+Y)(X+Y)T<2xXx7 +YYT) (A4)

Letting X =@ and Y = ®xin (A.4) and using definition (19) gives,
0:6{ < 2(@@+ :27) (A.5)

At this point, one can construct the following sequence of inequalities,

LA < 6467 (A6)
< 2(007 + ¢,97) (A7)
< 21r{00T 4+ 0,97} -1 (A.8)
< 2tr{08T} + vy -5 (Fo)) I =2a-1 (A.9)

Here, inequality (A.6)follows from the fact that ©xOf = KeK¥ + LiL; Inequality (A.7) follows
from (A.5); Inequality (A.8) follows from the fact that X <i¢r{X}-I for any symmetric non-negative
definite matrix X; Inequality (A.9) follows from property P5 of the estimator; and definition of o
in (A.3). This proves result, (A.1).

Using the polar decomposition (34) in (A.9) gives the relation,
QiSiQY < 2a-1 (A.10)
Hence, for any vector y,
v Sty = v QL (QuSiQT)Quy < 20 yT QT Quy = 20 Iy )2 (AlT)

where use has been made of (A.10) and the orthogonality property @f Q&= 1. Since y is arbitrary
in (All), one can conclude that,
Si<2a-1 (A.12)

which gives (A.2) upon taking the square root. .

Lemma A2: Let bo be a positive scalar such that,
LTL>by-1>0 (A.13)
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Let the MP-RLS agorithm (24)(25) be applied to normalized error equation (23). Then the gain
modification defined by (31) ensures that,

+7— b2
Delwz 25 1>0 (A.14)
where,
plo -m&x(%—,ﬁa) (A.15)
o £1r{667}+ v -7(F) (A.16)
Proof: Define,
[ e (A.17)
Rearranging (A.17) and using (41) gives,
0=06;-p757 (A.18)
L=1Le-pf (A.19)
Applying the matrix inequality,
X-Y)'(X - Y) 2XTXx +YTY) (A.20)
with choices X = Lx and Y = Befeto (A.19) giveds,
L'L <2 (11{13,c + 1 BL B fk) (A.21)
At this point one can construct the following seguence of inequalities,
T I ~
L < o(Hit - vifTh }) (A.22)
< 2+ 175 (e re)) (A.23)
< 2(“{13; + f?fwo) (A.24)
= 2(52 +A fkvo) (A.25)
< 2(\/5‘& S+ f,,Tfkuo) (A.26)
< P(Sk + b ST f::) (A.27)
= Q@i+ mausl A oQTL A2%)

Here, inequality (A.22) follows from (A.21) by using the matrix inequality X7y x < X7TXx .tr{Y}
valid for any symmetric non-negative definite Y; Inequality (A.23) follows by using the definition
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of Bk in (A. 17), Cholesky factors (40), and properties of the trace; Inequality (A .24) follows by
property P2 of the estimator; Equality (A.25) follows by substituting the polar decomposition (34);
Inequality (A.26) follows by result (A.2) of Lemma Al; Inequality (A.27)follows by the definition of
pin(A.15); and equation (A.28) follows by the orthogonality of @& and the structure of the modified
gain Lx in (39).

Using (A.13) and (A.28) gives upon squaring,
0< b2 1< (ITL (VL) < P L QuQTTe = p* I Iy (A.29)

Rearranging, gives the desired result (A.14). .

B APPENDIX B: Normalized Matrix RLS Properties

To simplify the presentation, the notation and results in this appendix are self-contained

Consider measurements of the form,
i = 0°Xy;;t=1,..,N (B.1)

where 8°¢€ R™*¢ is an matrix of unknown parameters, and Y;€ R™, Xi € Rt are known
measurement and regressor vectors, respectively. It is desired to recursively estimate the matrix ©°,

Lemma B.1 Consider the least squares cost function,
al 1
minCy :ngngllln = 0X/|I* + tr{(® ©)F (6 60)} (8.2)

where ¥ = F' > 0. Then the minimizing solution, denoted as O, is given by iterating from
t=1,.., Non the following recursive equations,
EXT Fiy

5, = By 4 AT T .
6 -1+ 7 X?F‘_]X‘ (B 3)

F:_] X,;X,TF,-I ; f — N (B4)

F . = (Ft—l - 117, y:rp Xi, F‘_lxi — gy el

where E;= Yi-0,.1X:,60= 0, and F. = F.

Proof: ‘I'his can be proved by separating the cost into scalar LS problems and applying standard
results (cf., Bayard [7]), or by directly taking a matrix derivative of the cost (cf., Jakubowski[16]).

Theorem B.2 Consider the measurement equations (B.]) where it is assumed that the regressor is
normalized as follows,
”Xf” <peit=1,..,00 (Bf))

Then the normalized matriz-parameter RLS algorithm (B.3)(B.4)(B.5), has the following properties,

Pl & F7 = &, FY = ... = & Fy !
. _ EET

P21 Vo= Vi - mxrro

P2-ii Vi = Y1 — JE‘ ?

WXTRIX
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P2-iii vy < vy €. <0
P3 5(F) <5(Fi-1) < ... < 6(Fo)
P4 limioo B4 =0
5 {14} < vo - &(Fo)
P6 limieos ||6; — Giy)l; = 0
P7 limyeeo Fy = Foo
P8 limgeeo Fr1 X1 =0
P9 iMoo Or = O = B° + o Fy 1 Fop

where the Frobenious norm is defined as||X ||y = (¢tr{X7 X})$ and,

3, 26,-0° (B.6)
2 8 g p-1gT
v =tr{Vi}; WVi= &F7'@7 >0 (B.7)
E; 2 Y- 61X, = (0° -6 1) X =~ X, (B.8)

Proof: The discussion here extends the results in Lozano-Leal and Goodwin [23] (Theorem 2.1,
page 670-671), to the matrix parameter case.

Proof of Pl: Multiplying (B.4) on the right by X, and rearranging gives,
Fea X e XTFoa Xy

= Fy Xy - p B.S
X, 1-1X1¢ 1+X‘7 Feo1 Xe (B.9)
/ XTFio1 Xy Fio1 Xt
= - = B.10
FaX b 13 XTFoaXe) 1+ XTFOX: (810
Also from (B.4) and the matrix inversion Lemma [2],
Fol=F7Y + xoxT (B.11)
Using (B.8) in RLS update law (B.3) gives,
A A O X XTFiy
O = By - 1l °- B.12
t t—1 1+X¢FI“1-1Xt ( )
Subtracting ®° from both sides of (B.12) gives,
@1 Xi XTI Ficy
¢, =, - = . B.13
4 -1 1+ XTF‘— 1X{ ( )
= d’;_l - 4’1_1X1X‘TF¢ (B14)
= 4)1_1(] - XgX,TFg) (Bl5)
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where (B. 14) follows from (B. 10), and (B. 15) follows by rearranging. Finally, using (B.11)in (B.15)
gives,

O =&y (I - F7F o+ FIAR) (B.16)

=@ F\F (B.17)

Multiplying both sides of (B.17) on the right by F,"! gives PI, as desired.

Proof of P2: Multiplying each side of P1 on the right by the respective side of (B.13) (transposed)
gives the identity,

Fio1 X X]
<}>F“¢T=¢_F-1( T '—‘-‘—‘—‘ ! B.18
t4y t i~1 1~1 q)t—l ]+X F( IXl ( )
Using definition (B.7)in (B.18) and rearranging gives,
O X XT 0T,
= Viiy - ——e e — < 1
Vi Viey 14 XtTF;..1X1 (B 9)
v
= Viey - - Tak (B.20)

14 XTFa Xy

which proves P2-i. Taking the trace of both sides of (B.20) and using (B.7) proves P2-ii. Property
P2-iii follows directly from P2-ii.

Proof of P3: Taking the minimum singular value of both sides of (B.11) gives,
o(Fey = a(F X X)) 2 o(F7Y) (B.21)

or equivalently,
1 .1
E(Ft—l) -.‘I(Ftill- )
Property P3 follows from (B.22) and the fact that (X) = 1 /o(X ') for any nonsingular matrix
X.

@.22)

Proof of P4: Note that v, = limy_ Yt exists since from P2 the sequence v;is monotonic
nonincreasing and bounded below by O. Hence, rearranging P2 and summing both sides from 1 to
00 gives,

N~ BB (B.23)
El -t- X, Fo1 Xy )
e ETE,
B.24
El—w(h 1)P2 (B.24)
T
1+0(Fo)p7 }fE Eq (B.25)

where (B.25) follows from result P3. Result P4 is proved by noting that the nonegative sequence
ETE;in (B.25)issummable and hence approached zero asymptotically.
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Proof of P5:From P2, it follows that v;<vs. Using definition @.7) gives upon rearranging,

Yo v (B.26)

v

= tr{®F7IOT} > o (F7 Htr{®: 97}

tr{®,07) S tr{®.07}
o(F) ~  7(Fo)

(B.27)

Crossmultiplying by (Fo)in @.27) and using the Frobenious norm definition gives result P5.

Proof of P6:From the RLS update @.3),

A oA EXTF \Fi 1\ X(ET
— B2 =1 tt_}_lilt;} 138
196 = Oe-1l r{ (1 + XTFio1Xy)? (1329
o(Fio1)XT Fio1 Xo(ET EY) < o(Fi-1)ET Ey (B.29)
ST T4 XTFiaXe)? | S 14 XT Feo1 X '
< F(Fi-1) B B < 5(Fo)E] By (B.30)

where (B.29) follows from the fact that |z|/(1+ [|z|)< 1, and (B.30) follows from result P3. Using
result P4 in (B.30) proves result P6 as desired.

Proof of ¥ 7: Before considering convergence of Fy, consider convergence of the symmetric product
27 Fyz for any specified z. From the covariance update (B.4) it follows that,

TFRz=2"F1z-r12 0 (B.31)

where,

s 2" F 1 X2
e 1 = 1+X‘TF‘1._1X120 (B32)

Since 27 Fyz is monotonic nonincreasing and bounded below by zero, it converges. Note that the
1j’th entry fi; of Fr can be always written as the asymmetric product,

fij = el Fe (B.33)
where eand eare unit vectors with 1’s in the i’th and j'th elements, respectively. Convergence of
Jij follows by writing (B.33) as,

fis = el Fiej = ((e.- +¢;) Fiei + e) - el Fye; - efF,e,—))/Z (B.34)

and by invoking the previous convergence result for symrmetric products. The matrix Fy is convergent
since it is componentwise convergent.

Proof of P8: Taking the limit ¢— oo of the trace of (B.4), and using result P7 gives,

| Fyo 1 Xe|[?
ikl LIS B.35
oo 1 + XTF1 Xy ( )
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However, from P3 it follows that,

”Fi-1X1”2 _ >_|E‘_—-}5_{H? > ”Fi—&u_z_ (B 36)
I + X‘TF¢-1X1 1+ (7(}“1_1),02 1+ 5(F0)P,2; )

T

Taking the limit as t + oo in (B.36) and using (B.35) gives the desired result.

Proof Of P9: Rearrange result PI to give, ®t+ = ®oFy ! Fy, and take the limitt — 0o noting that
Fy— Fo, by result P7.
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